Transforming growth factor β1 alters the 3'-UTR of mRNA to promote lung fibrosis

转化生长因子β1改变mRNA的3'-UTR促进肺纤维化

阅读:6
作者:Junsuk Ko, Tingting Mills, Jingjing Huang, Ning-Yuan Chen, Tinne C J Mertens, Scott D Collum, Garam Lee, Yu Xiang, Leng Han, Yang Zhou, Chun Geun Lee, Jack A Elias, Soma S K Jyothula, Keshava Rajagopal, Harry Karmouty-Quintana, Michael R Blackburn

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFβ1. We found that miR203, which is increased in IPF, was induced by TGFβ1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFβ1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFβ1 transgenic mice revealed that TGFβ1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFβ1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFβ1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。