Bioinspired engineering ADSC nanovesicles thermosensitive hydrogel enhance autophagy of dermal papilla cells for androgenetic alopecia treatment

仿生工程 ADSC 纳米囊泡温敏水凝胶增强真皮乳头细胞自噬,用于治疗雄激素性脱发

阅读:5
作者:Jiachao Xiong, Zhixiao Liu, Lingling Jia, Yulin Sun, Rong Guo, Tingting Xi, Zihan Li, Minjuan Wu, Hua Jiang, Yufei Li

Abstract

Androgenic alopecia (AGA) is a highly prevalent form of non-scarring alopecia but lacks effective treatments. Stem cell exosomes have similar repair effects to stem cells, suffer from the drawbacks of high cost and low yield yet. Cell-derived nanovesicles acquired through mechanical extrusion exhibit favorable biomimetic properties similar to exosomes, enabling them to efficiently encapsulate substantial quantities of therapeutic proteins. In this study, we observed that JAM-A, an adhesion protein, resulted in a significantly increased the adhesion and resilience of dermal papilla cells to form snap structures against damage caused by dihydrotestosterone and macrophages, thereby facilitating the process of hair regrowth in cases of AGA. Consequently, adipose-derived stem cells were modified to overexpress JAM-A to produce engineered JAM-A overexpressing nanovesicles (JAM-AOE@NV). The incorporation of JAM-AOE@NV into a thermosensitive hydrogel matrix (JAM-AOE@NV Gel) to effectively addresses the limitations associated with the short half-life of JAM-AOE@NV, and resulted in the achievement of a sustained-release profile for JAM-AOE@NV. The physicochemical characteristics of the JAM-AOE@NV Gel were analyzed and assessed for its efficacy in promoting hair regrowth in vivo and vitro. The JAM-AOE@NV Gel, thus, presents a novel therapeutic approach and theoretical framework for promoting the treatment of low cell adhesion diseases similar to AGA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。