miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer

miR-105/93-3p 促进化疗耐药,循环 miR-105/93-3p 可作为三阴性乳腺癌的诊断生物标志物

阅读:4
作者:Hao-Yi Li, Jui-Lin Liang, Yao-Lung Kuo, Hao-Hsien Lee, Marcus J Calkins, Hong-Tai Chang, Forn-Chia Lin, Yu-Chia Chen, Tai-I Hsu, Michael Hsiao, Luo-Ping Ger, Pei-Jung Lu

Background

Triple negative breast cancer (TNBC) lacks both early detection biomarkers and viable targeted therapeutics. Moreover, chemotherapy only produces 20-30% pathologic complete response. Because miRNAs are frequently dysregulated in breast cancer and have broad tissue effects, individual or combinations of circulating miRNAs may serve as ideal diagnostic, predictive or prognostic biomarkers, as well as therapeutic targets. Understanding the role and mechanism of dysregulated miRNAs in TNBC may help to develop novel diagnostic and prognostic strategy for TNBC patients.

Conclusions

miR-105/93-3p activates Wnt/β-catenin signaling by downregulating SFRP1 and thereby promotes stemness, chemoresistance, and metastasis in TNBC cells. Most importantly, combined circulating miR-105/93-3p levels represent a prime candidate for development into a diagnostic biomarker for both early- and late-stage TNBC.

Methods

The miRNA array profiles of 1299 breast cancer patients were collected from the Metabric database and subjected to analysis of the altered miRNAs between TNBC and non-TNBC. In Student's t-test and Kaplan-Meier analysis, four upregulated miRNAs correlated with poor survival in TNBC but not in non-TNBC. Four miRNAs were manipulated in multiple cell lines to investigate their functional role in carcinogenesis. From these

Results

miR-105 and miR-93-3p were upregulated and correlated with poor survival in TNBC patients. Both miR-105 and miR-93-3p were found to activate Wnt/β-catenin signaling by downregulation of SFPR1. By this action, stemness, chemoresistance, and metastasis were promoted. Importantly, the combination of circulating miR-105/93-3p may serve as a powerful biomarker for TNBC, even in early-stage disease. Conclusions: miR-105/93-3p activates Wnt/β-catenin signaling by downregulating SFRP1 and thereby promotes stemness, chemoresistance, and metastasis in TNBC cells. Most importantly, combined circulating miR-105/93-3p levels represent a prime candidate for development into a diagnostic biomarker for both early- and late-stage TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。