Natural killer cell detection, quantification, and subpopulation identification on paper microfluidic cell chromatography using smartphone-based machine learning classification

使用基于智能手机的机器学习分类在纸微流控细胞色谱上进行自然杀伤细胞检测、定量和亚群识别

阅读:6
作者:Ryan Zenhausern, Alexander S Day, Babak Safavinia, Seungmin Han, Paige E Rudy, Young-Wook Won, Jeong-Yeol Yoon

Abstract

Natural killer (NK) cells are immune cells that defend against viral infections and cancer and are used in cancer immunotherapies. Subpopulations of NK cells include CD56dim and CD56bright which either produce cytokines or cytotoxically kill cells directly. The absolute number and proportion of these cells in peripheral blood are tied to proper immune function. Current methods of cytokine detection and proportion of NK cell subpopulations require fluorescent dyes and highly specialized equipment, e.g., flow cytometry, thus rapid cell quantification and subpopulation analysis are needed in the clinical setting. Here, a smartphone-based device and a two-component paper microfluidic chip were used towards identifying NK cell subpopulation and inflammatory markers. One unit measured flow velocity via smartphone-captured video, determining cytokine (IL-2) and total NK cell concentrations in undiluted buffy coat blood samples. The other, single flow lane unit performs spatial separation of CD56dim and CD56bright and cells over its length using differential binding of anti-CD56 nanoparticles. A smartphone microscope combined with cloud-based machine learning predictive modeling (utilizing a random forest classification algorithm) analyzed both flow data and NK cell subpopulation differentiation. Limits of detection for cytokine and cell concentrations were 98 IU/mL and 68 cells/mL, respectively, and cell subpopulation analysis showed 89% accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。