Dextran as an elicitor of phenylpropanoid and flavonoid biosynthesis in tomato fruit against gray mold infection

葡聚糖作为番茄果实中苯丙素和黄酮类化合物生物合成的诱导剂对抗灰霉病感染

阅读:5
作者:Laifeng Lu, Lifeng Ji, Ruixi Shi, Shuhua Li, Xi Zhang, Qingbin Guo, Changlu Wang, Liping Qiao

Abstract

Alpha-1,3-glucan is often synthesized on the surface of pathogenic filamentous fungi cell walls to block pathogen-associated molecular patterns (PAMPs) generation by host plant enzymes and the subsequent immune system response of the plant. Here, Botrytis cinerea susceptibility was assessed in tomato fruit to determine whether the fruit could recognize this camouflage and mount an immune response to it. The results showed that local mechanical wounds treated with dextran and laminarin, except amylopectin, could locally and then systemically activate disease resistance against B. cinerea infection in tomato fruit. Dextran treatment effectively elicited fruit callose deposition and phenylpropanoid and flavonoid biosynthesis to a greater extent than α-glucanase activity relative to the mock group surface wounds. Enzymatic hydrolysis of this polysaccharide provided some help in improving host disease resistance. Taken together, these results demonstrate that tomato fruit can perceive α-1,3-glucan as a kind of PAMPs but have limited ability to degrade it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。