Conclusions
The stimulatory TRAb M22 increases HA production in undifferentiated GO orbital fibroblasts via phosphoinositide 3-kinase/phosphorylated AKT/mammalian target of rapamycin activation. Blockade of IGF-IR inhibits both HA synthesis and Akt phosphorylation induced by M22 or IGF-I in these cells, suggesting that TSH receptor and IGF-IR signaling may be closely linked in the GO orbit.
Objective
The objective of the study was to determine whether a monoclonal stimulatory TRAb (M22) impacts HA synthesis in GO orbital cells and, if so, whether this might be blocked by an IGF-I receptor (IGF-IR)-blocking antibody (1H7) or inhibitors of various downstream signaling cascades. Design: GO orbital fibroblast cultures (n = 6) were treated with M22, bovine TSH (bTSH), or IGF-I in serum-free medium. Some cultures also received 1H7, LY294002, rapamycin, or protein kinase A inhibitor. Main outcome measures: HA production and phosphorylated Akt levels in media or immunoblotting for phosphorylated Akt were measured.
Results
M22 or bTSH stimulated HA synthesis (2.1-fold with 100 ng/ml M22 and 1.9-fold with 10 U/liter bTSH; P < 0.05 each). M22-induced HA synthesis was inhibited by LY294002 or rapamycin but not by protein kinase inhibitor. HA synthesis stimulated by M22 or IGF-I was inhibited by 1H7 (mean 36.6 ± 5.6% and mean 45.8 ± 7.6%, respectively; P < 0.05 each). Similarly, M22- or IGF-I-stimulated Akt phosphorylation was inhibited by 1H7 (mean 54 ± 9.6 and 36.1 ± 8.8%, respectively; P = 0.01 each). Conclusions: The stimulatory TRAb M22 increases HA production in undifferentiated GO orbital fibroblasts via phosphoinositide 3-kinase/phosphorylated AKT/mammalian target of rapamycin activation. Blockade of IGF-IR inhibits both HA synthesis and Akt phosphorylation induced by M22 or IGF-I in these cells, suggesting that TSH receptor and IGF-IR signaling may be closely linked in the GO orbit.
