BCNU-sequestration by metallothioneins may contribute to resistance in a medulloblastoma cell line

金属硫蛋白对 BCNU 的封存可能导致髓母细胞瘤细胞系产生耐药性

阅读:9
作者:Manny D Bacolod, Randy Fehdrau, Stewart P Johnson, Nancy S Bullock, Darell D Bigner, Michael Colvin, Henry S Friedman

Conclusion

We demonstrate that resistance to BCNU may be a result of elevated levels of MTs which act by sequestering the drug's decomposition product(s).

Methods

To demonstrate the binding of BCNU to MT, we used an assay that measured the release of the MT-bound divalent cations (Zn(2+), Cd(2+)) upon their displacement by the drug. We also measured the decomposition rates of BCNU at those reaction conditions.

Purpose

Resistance of neoplastic cells to the alkylating drug BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] has been correlated with expression of O (6)-methylguanine-DNA methyltransferase, which repairs the O (6)-chloroethylguanine produced by the drug. Other possible mechanisms of resistance include raised levels of glutathione or increased repair of the DNA interstrand cross-links formed by BCNU. Transcriptional profiling revealed the upregulation of several metallothionein (MT) genes in a BCNU-resistant medulloblastoma cell line [D341 MED (OBR)] relative to its parental line. Previous studies have shown that MTs, through their reactive thiol groups can quench nitrogen mustard-derived alkylating drugs. In this report, we evaluate whether MTs can also quench BCNU.

Results

The rate of release of the cations was higher in pH 7.4 than at pH 7.0, which is likely a result of more rapid decomposition of BCNU (thus faster release of MT-binding intermediate) at pH 7.4 than at pH 7.0.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。