Characterization of the Effects of a Novel Probiotic on Salmonella Colonization of a Piglet-Derived Intestinal Microbiota Using Improved Bioreactor

使用改进的生物反应器表征新型益生菌对仔猪肠道菌群沙门氏菌定植的影响

阅读:5
作者:Amely Grandmont, Mohamed Rhouma, Marie-Pierre Létourneau-Montminy, William Thériault, Isabelle Mainville, Yves Arcand, Roland Leduc, Bruno Demers, Alexandre Thibodeau

Abstract

The carriage of Salmonella in pigs is a major concern for the agri-food industry and for global healthcare systems. Humans could develop salmonellosis when consuming contaminated pig products. On the other hand, some Salmonella serotypes could cause disease in swine, leading to economic losses on farms. The purpose of the present study was to characterize the anti-Salmonella activity of a novel Bacillus-based probiotic using a bioreactor containing a piglet-derived intestinal microbiota. Two methods of probiotic administration were tested: a single daily and a continuous dose. Salmonella enumeration was performed using selective agar at T24h, T48h, T72h, T96h and T120h. The DNA was extracted from bioreactor samples to perform microbiome profiling by targeted 16S rRNA gene sequencing on Illumina Miseq. The quantification of short-chain fatty acids (SCFAs) was also assessed at T120h. The probiotic decreased Salmonella counts at T96 for the daily dose and at T120 for the continuous one. Both probiotic doses affected the alpha and beta diversity of the piglet-derived microbiota (p < 0.05). A decrease in acetate concentration and an increase in propionate proportion were observed in the continuous condition. In conclusion, the tested Bacillus-based product showed a potential to modulate microbiota and reduce Salmonella colonization in a piglet-derived intestinal microbiota and could therefore be used in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。