Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency

与原发性免疫缺陷相关的内含子突变会破坏细胞毒性淋巴细胞中 Munc13-4 表达的转录调控

阅读:8
作者:Frank Cichocki, Heinrich Schlums, Hongchuan Li, Vanessa Stache, Timothy Holmes, Todd R Lenvik, Samuel C C Chiang, Jeffrey S Miller, Marie Meeths, Stephen K Anderson, Yenan T Bryceson

Abstract

Autosomal recessive mutations in UNC13D, the gene that encodes Munc13-4, are associated with familial hemophagocytic lymphohistiocytosis type 3 (FHL3). Munc13-4 expression is obligatory for exocytosis of lytic granules, facilitating cytotoxicity by T cells and natural killer (NK) cells. The mechanisms regulating Munc13-4 expression are unknown. Here, we report that Munc13-4 is highly expressed in differentiated human NK cells and effector CD8(+) T lymphocytes. A UNC13D c.118-308C>T mutation, causative of FHL3, disrupted binding of the ETS family member ELF1 to a conserved intronic sequence. This mutation impairs UNC13D intron 1 recruitment of STAT4 and the chromatin remodeling complex component BRG1, diminishing active histone modifications at the locus. The intronic sequence acted as an overall enhancer of Munc13-4 expression in cytotoxic lymphocytes in addition to representing an alternative promoter encoding a novel Munc13-4 isoform. Mechanistically, T cell receptor engagement facilitated STAT4-dependent Munc13-4 expression in naive CD8(+) T lymphocytes. Collectively, our data demonstrates how chromatin remodeling within an evolutionarily conserved regulatory element in intron 1 of UNC13D regulates the induction of Munc13-4 expression in cytotoxic lymphocytes and suggests that an alternative Munc13-4 isoform is required for lymphocyte cytotoxicity. Thus, mutations associated with primary immunodeficiencies may cause disease by disrupting transcription factor binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。