Hexose-6-phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfolded-protein response, calcium homeostasis, and redox balance

己糖-6-磷酸脱氢酶通过对未折叠蛋白反应、钙稳态和氧化还原平衡的多效性影响来控制癌细胞的增殖和迁移

阅读:5
作者:Maria Tsachaki, Natasa Mladenovic, Hana Štambergová, Julia Birk, Alex Odermatt

Abstract

Hexose-6-phosphate dehydrogenase (H6PD) produces reduced NADPH in the endoplasmic reticulum (ER) lumen. NADPH constitutes a cofactor for many reducing enzymes, and its inability to traverse biologic membranes makes in situ synthesis of NADPH in the ER lumen indispensable. The H6PD gene is amplified in several types of malignancies, and earlier work pointed toward a potential involvement of the enzyme in cancer cell growth. In the present study, we demonstrated a pivotal role of H6PD in proliferation and migratory potential of 3 human breast cancer cell lines. Knockdown of H6PD decreased proliferation and migration in SUM159, MCF7, and MDA-MB-453 cells. To understand the mechanism through which H6PD exerts its effects, we investigated the cellular changes after H6PD silencing in SUM159 cells. Knockdown of H6PD resulted in an increase in ER lumen oxidation, and down-regulation of many components of the unfolded protein response, including the transcription factors activating transcription factor-4, activating transcription factor-6, split X-box binding protein-1, and CCAAT/enhancer binding protein homologous protein. This effect was accompanied by an increase in sarco/endoplasmic reticulum Ca2+-ATPase-2 pump expression and an decrease in inositol trisphosphate receptor-III, which led to augmented levels of calcium in the ER. Further characterization of the molecular pathways involving H6PD could greatly broaden our understanding of how the ER microenvironment sustains malignant cell growth.-Tsachaki, M., Mladenovic, N., Štambergová, H., Birk, J., Odermatt, A. Hexose-6-phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfolded protein response, calcium homeostasis, and redox balance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。