Geomagnetic Shielding Enhances Radiation Resistance by Promoting DNA Repair Process in Human Bronchial Epithelial Cells

地磁屏蔽通过促进人类支气管上皮细胞的 DNA 修复过程增强抗辐射能力

阅读:8
作者:Xunwen Xue, Yasser F Ali, Caorui Liu, Zhiqiang Hong, Wanrong Luo, Jing Nie, Bingyan Li, Yang Jiao, Ning-Ang Liu

Abstract

With the advent of long-duration space explorations, ionizing radiation (IR) may pose a constant threat to astronauts without the protection of Earth's magnetic field, or hypomagnetic field (HMF). However, the potential biological effects of a HMF on the cellular response to IR have not been well characterized so far. In this study, immortalized human bronchial epithelial cells were exposed to X-rays under either a geomagnetic field (GMF, ~50 uT) or HMF (<50 nT) culture condition. A significant increase of the cell survival rate in HMF after radiation was observed by colony formation analysis. The kinetics of DNA double-strand breaks (DSBs), determined by γH2AX foci formation and disappearance, presented a faster decrease of foci-positive cells and a significantly lower mean number of γH2AX foci per nucleus in HMF-cultured cells than in GMF-cultured cells after radiation. In addition, a γH2AX/53BP1 colocalization assay showed an upregulated DSB recovery rate in HMF cultured cells. These findings provided the first evidence that HMF exposure may enhance the cellular DSB repair efficiency upon radiation, and consequently modulate the genotoxic effects of IR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。