Disrupted hypothalamic CRH neuron responsiveness contributes to diet-induced obesity

下丘脑 CRH 神经元反应紊乱导致饮食引起的肥胖

阅读:7
作者:Canjun Zhu, Yuanzhong Xu, Zhiying Jiang, Jin Bin Tian, Ryan M Cassidy, Zhao-Lin Cai, Gang Shu, Yong Xu, Mingshan Xue, Benjamin R Arenkiel, Qingyan Jiang, Qingchun Tong

Abstract

The current obesity epidemic mainly results from high-fat high-caloric diet (HFD) feeding and may also be contributed by chronic stress; however, the neural basis underlying stress-related diet-induced obesity remains unknown. Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamus (PVH), a known body weight-regulating region, represent one key group of stress-responsive neurons. Here, we found that HFD feeding blunted PVH CRH neuron response to nutritional challenges as well as stress stimuli and dexamethesone, which normally produce rapid activation and inhibition on these neurons, respectively. We generated mouse models with the activity of these neurons clamped at high or low levels, both of which showed HFD-mimicking, blunted PVH CRH neuron responsiveness. Strikingly, both models developed rapid HFD-induced obesity, associated with HFD-mimicking, reduced diurnal rhythmicity in feeding and energy expenditure. Thus, blunted responsiveness of PVH CRH neurons, but not their absolute activity levels, underlies HFD-induced obesity and may also contribute to stress-induced obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。