Serum superoxide dismutase level is a potential biomarker of disease prognosis in patients with HEV-induced liver failure

血清超氧化物歧化酶水平是 HEV 诱发肝衰竭患者疾病预后的潜在生物标志物

阅读:4
作者:Yajuan He #, Fei Wang #, Naijuan Yao, Yuchao Wu, Yingren Zhao, Zhen Tian

Background

Viral hepatitis E clinically ranges from self-limiting hepatitis to lethal liver failure. Oxidative stress has been shown to mediate hepatic inflammation during HBV-induced liver failure. We investigated whether a biomarker of oxidative stress may be helpful in assessing severity and disease outcomes of patients with HEV-induced liver failure.

Conclusion

HEV increased oxidative stress in the pathogenesis of HEV-induced hepatic diseases. Early testing of serum SOD may serve as a predictor of both HEV-ALF and HEV-ACLF outcomes. Moreover, development of strategies for modulating oxidative stress might be a potential target for treating HEV-induced liver failure patients.

Methods

Clinical data were obtained from patients with HEV-induced acute viral hepatitis (AVH, n = 30), acute liver failure (ALF, n = 17), and acute-on-chronic liver failure (ACLF, n = 36), as well as from healthy controls (HC, n = 30). The SOD and HMGB1 levels were measured in serum by ELISA. HL-7702 cells were cultured and stimulated by serum from HEV-infected patients or by HMGB1; oxidative status was investigated by CellROX and apoptosis was investigated by flow cytometry.

Results

Patients with HEV-induced liver failure (including ALF and ACLF) showed increased SOD levels compared with HEV-AVH patients and healthy controls. SOD levels > 400 U/mL were associated with a significantly higher risk of mortality in HEV-ALF and HEV-ACLF patients. Serum from HEV-infected patients led to ROS accumulation, HMGB1 secretion, and apoptosis in HL-7702 cells. Antioxidant treatment successfully inhibited HEV-induced HMGB1 secretion, and HMGB1 promoted apoptosis in HL-7702 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。