Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study

还原氧化石墨烯诱导血脑屏障短暂开放:一项体内研究

阅读:5
作者:Monique Culturato Padilha Mendonça, Edilene Siqueira Soares, Marcelo Bispo de Jesus, Helder José Ceragioli, Mônica Siqueira Ferreira, Rodrigo Ramos Catharino, Maria Alice da Cruz-Höfling

Background

The blood-brain barrier (BBB) is a complex physical and functional barrier protecting the central nervous system from physical and chemical insults. Nevertheless, it also constitutes a barrier against therapeutics for treating neurological disorders. In this context, nanomaterial-based therapy provides a potential alternative for overcoming this problem. Graphene family has attracted significant interest in nanomedicine because their unique physicochemical properties make them amenable to applications in drug/gene delivery and neural interface.

Conclusions

rGO was able to be detected and monitored in the brain over time provided by a novel application for MALDI-MSI and could be a useful tool for treating a variety of brain disorders that are normally unresponsive to conventional treatment because of BBB impermeability.

Results

In this study, reduced graphene oxide (rGO) systemically-injected was found mainly located in the thalamus and hippocampus of rats. The entry of rGO involved a transitory decrease in the BBB paracellular tightness, as demonstrated at anatomical (Evans blue dye infusion), subcellular (transmission electron microscopy) and molecular (junctional protein expression) levels. Additionally, we examined the usefulness of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) as a new imaging method for detecting the temporal distribution of nanomaterials throughout the brain. Conclusions: rGO was able to be detected and monitored in the brain over time provided by a novel application for MALDI-MSI and could be a useful tool for treating a variety of brain disorders that are normally unresponsive to conventional treatment because of BBB impermeability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。