Ameliorative Effect of Coenzyme Q10 on Phenotypic Transformation in Human Smooth Muscle Cells with FBN1 Knockdown

辅酶 Q10 对 FBN1 敲低的人类平滑肌细胞表型转化的改善作用

阅读:4
作者:Xu Zhang, Zhengyang Zhang, Sitong Wan, Jingyi Qi, Yanling Hao, Peng An, Yongting Luo, Junjie Luo

Abstract

Mutations of the FBN1 gene lead to Marfan syndrome (MFS), which is an autosomal dominant connective tissue disorder featured by thoracic aortic aneurysm risk. There is currently no effective treatment for MFS. Here, we studied the role of mitochondrial dysfunction in the phenotypic transformation of human smooth muscle cells (SMCs) and whether a mitochondrial boosting strategy can be a potential treatment. We knocked down FBN1 in SMCs to create an MFS cell model and used rotenone to induce mitochondrial dysfunction. Furthermore, we incubated the shFBN1 SMCs with Coenzyme Q10 (CoQ10) to assess whether restoring mitochondrial function can reverse the phenotypic transformation. The results showed that shFBN1 SMCs had decreased TFAM (mitochondrial transcription factor A), mtDNA levels and mitochondrial mass, lost their contractile capacity and had increased synthetic phenotype markers. Inhibiting the mitochondrial function of SMCs can decrease the expression of contractile markers and increase the expression of synthetic genes. Imposing mitochondrial stress causes a double-hit effect on the TFAM level, oxidative phosphorylation and phenotypic transformation of FBN1-knockdown SMCs while restoring mitochondrial metabolism with CoQ10 can rapidly reverse the synthetic phenotype. Our results suggest that mitochondria function is a potential therapeutic target for the phenotypic transformation of SMCs in MFS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。