Water extract of Uncaria sinensis suppresses RANKL-induced bone loss by attenuating osteoclast differentiation and bone resorption

钩藤水提取物通过减弱破骨细胞分化和骨吸收来抑制 RANKL 诱导的骨质流失

阅读:10
作者:Hyunil Ha, Ki-Shuk Shim, Jin Yeul Ma

Background

The hooks and stems of Uncaria sinensis have been used to mitigate cardiovascular and central nervous system disorders in Asia traditional medicine. Regulation of osteoclast differentiation and activity is a major target for preventing and treating pathological bone diseases.

Conclusion

The present study demonstrates that WEUS has a pharmacological activity that inhibits osteoclast-mediated bone destruction by suppressing osteoclast differentiation and function. These results suggest that U. sinensis could be a promising herbal candidate for preventing and treating bone diseases such as osteoporosis.

Methods

Tartrate-resistant acid phosphatase (TRAP) activity and the number of TRAP-stained multinucleated cells were used to examine receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. The activation of RANKL-induced signaling pathways and the expression of transcription factors were investigated by western blot analysis and quantitative real-time polymerase chain reaction. The bone resorption activity of osteoclast was studied using a plate coated with hydroxyl-apatite. Trabecular bone destruction was investigated using a RANKL-induced trabecular bone loss mouse model.

Results

We found that water extract of the hooks and stems of U. sinensis (WEUS) inhibits RANKL-induced differentiation of murine bone marrow macrophages and RAW264.7 cells into osteoclasts. WEUS inhibited the activation of NF-κB and the expression of nuclear factor of activated T-cells, cytoplasmic 1. In addition, WEUS suppressed the bone resorbing activity of mature osteoclasts without affecting their survival. Furthermore, oral administration of WEUS suppressed RANKL-induced bone loss with a significant amelioration of trabecular bone micro-structures. WEUS also reduced RANKL-induced increase in serum TRAP5b activity and C-terminal cross-linked telopeptide of type I collagen levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。