Insights from mathematical modelling for T cell migration into the central nervous system

细胞迁移至中枢神经系统的数学建模见解

阅读:8
作者:T Ruck, S Bittner, S G Meuth, M Herty

Abstract

The migration of immune cells from peripheral immune organs into the central nervous system (CNS) through the blood-brain barrier (BBB) is a tightly regulated process. The complex interplay between cells of the BBB and immune cells coordinates cell migration as a part of normal immune surveillance while its dysregulation is critically involved in the pathogenesis of various CNS diseases. To develop tools for a deeper understanding of distribution and migratory pattern of immune cells regulated by the BBB, we made use of a mathematical modelling approach derived from Markov chain theory. We present a data-driven model using a derivation of kinetic differential equations from a particle game. According to the theory of gases, these equations allow one to predict the mean behaviour of a large class of cells by modelling cell-cell interactions. We used this model to assess the distribution of naive, central memory and effector memory T lymphocytes in the peripheral blood and cerebrospinal fluid. Our model allows us to evaluate the impact of activation status, migratory capacity and cell death for cell distribution in the peripheral blood and the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。