Functional Studies of Deafness-Associated Pendrin and Prestin Variants

耳聋相关Pendrin和Prestin变异体的功能研究

阅读:1
作者:Satoe Takahashi ,Takashi Kojima ,Koichiro Wasano ,Kazuaki Homma

Abstract

Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants. Keywords: DFNB4; DFNB61; SLC26A4; SLC26A5; hereditary hearing loss; nonlinear capacitance; pendred syndrome; pendrin; prestin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。