Sulforaphane enriched transcriptome of lung mitochondrial energy metabolism and provided pulmonary injury protection via Nrf2 in mice

萝卜硫素丰富了小鼠肺线粒体能量代谢的转录组,并通过 Nrf2 为肺损伤提供保护

阅读:6
作者:Hye-Youn Cho, Laura Miller-DeGraff, Terry Blankenship-Paris, Xuting Wang, Douglas A Bell, Fred Lih, Leesa Deterding, Vijayalakshmi Panduri, Daniel L Morgan, Masayuki Yamamoto, Anita J Reddy, Paul Talalay, Steven R Kleeberger

Abstract

Nrf2 is essential to antioxidant response element (ARE)-mediated host defense. Sulforaphane (SFN) is a phytochemical antioxidant known to affect multiple cellular targets including Nrf2-ARE pathway in chemoprevention. However, the role of SFN in non-malignant airway disorders remain unclear. To test if pre-activation of Nrf2-ARE signaling protects lungs from oxidant-induced acute injury, wild-type (Nrf2+/+) and Nrf2-deficient (Nrf2-/-) mice were given SFN orally or as standardized broccoli sprout extract diet (SBE) before hyperoxia or air exposure. Hyperoxia-induced pulmonary injury and oxidation indices were significantly reduced by SFN or SBE in Nrf2+/+ mice but not in Nrf2-/- mice. SFN upregulated a large cluster of basal lung genes that are involved in mitochondrial oxidative phosphorylation, energy metabolism, and cardiovascular protection only in Nrf2+/+ mice. Bioinformatic analysis elucidated ARE-like motifs on these genes. Transcript abundance of the mitochondrial machinery genes remained significantly higher after hyperoxia exposure in SFN-treated Nrf2+/+ mice than in SFN-treated Nrf2-/- mice. Nuclear factor-κB was suggested to be a central molecule in transcriptome networks affected by SFN. Minor improvement of hyperoxia-caused lung histopathology and neutrophilia by SFN in Nrf2-/- mice implies Nrf2-independent or alternate effector mechanisms. In conclusion, SFN is suggested to be as a preventive intervention in a preclinical model of acute lung injury by linking mitochondria and Nrf2. Administration of SFN alleviated acute lung injury-like pathogenesis in a Nrf2-dependent manner. Potential AREs in the SFN-inducible transcriptome for mitochondria bioenergetics provided a new insight into the downstream mechanisms of Nrf2-mediated pulmonary protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。