Inhibition of BRD4 attenuates transverse aortic constriction- and TGF-β-induced endothelial-mesenchymal transition and cardiac fibrosis

BRD4 抑制可减弱横主动脉缩窄和 TGF-β 诱导的内皮间质转化和心脏纤维化

阅读:8
作者:Shuai Song, Liang Liu, Yi Yu, Rui Zhang, Yigang Li, Wei Cao, Ying Xiao, Guojian Fang, Zhen Li, Xuelian Wang, Qi Wang, Xin Zhao, Long Chen, Yuepeng Wang, Qunshan Wang

Abstract

Cardiac fibrosis (CF), a process characterized by potentiated proliferation of cardiac fibroblasts and excessive secretion and deposition of extracellular matrix (ECM) from the cells, contributes strongly to the pathogenesis of a series of cardiovascular (CV) diseases, including AMI, heart failure and atrial fibrillation. Endothelial-mesenchymal transition (EndMT), one of the sources of transformed cardiac fibroblasts, has been reported as a key factor involved in CF. However, the molecular basis of EndMT has not been thoroughly elucidated to date. At the posttranscriptional level, of the three epigenetic regulators, writer and eraser are reported to be involved in EndMT, but the role of reader in the process is still unknown. In this study, we aimed to explore the role of Bromodomain-containing protein 4 (BRD4), an acetyl-lysine reader protein, in EndMT-induced CF and related mechanisms. We found that BRD4 was upregulated in endothelial cells (ECs) in the pressure-overload mouse heart and that its functional inhibitor JQ1 potently attenuated the TAC-induced CF and preserved cardiac function. In umbilical vein endothelial cells (HUVECs) and mouse aortic endothelial cells (MAECs), bothJQ1 and shRNA-mediated silencing of BRD4 blocked TGF-β-induced EC migration, EndMT and ECM synthesis and preserved the EC sprouting behavior, possibly through the downregulation of a group of transcription factors specific for EndMT (Snail, Twist and Slug), the Smads pathway and TGF-β receptor I. In the absence of TGF-β stimulation, ectopic expression of BRD4 alone could facilitate EndMT, accelerate migration and increase the synthesis of ECM. In vivo, JQ1 also attenuated TAC-induced EndMT and CF, which was consistent with JQ1's intracellular mechanisms of action. Our results showed that BRD4 plays a critical role in EndMT-induced CF and that targeting BRD4 might be a novel therapeutic option for CF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。