S100A1 in human heart failure: lack of recovery following left ventricular assist device support

人类心力衰竭中的 S100A1:左心室辅助装置支持后无法恢复

阅读:8
作者:Mosi K Bennett, Wendy E Sweet, Sara Baicker-McKee, Elizabeth Looney, Kristen Karohl, Maria Mountis, W H Wilson Tang, Randall C Starling, Christine S Moravec

Background

We hypothesized that S100A1 is regulated during human hypertrophy and heart failure and that it may be implicated in remodeling after left ventricular assist device. S100A1 is decreased in animal and human heart failure, and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explore human cardiac S100A1 regulation and its role in remodeling.

Conclusions

S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, both key Ca(2+)-regulatory proteins, are decreased in human heart failure, and these changes are not reversed after left ventricular assist device. The clinical significance of these findings for cardiac recovery remains to be addressed.

Results

We measured S100A1, the sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, phospholamban, and ryanodine receptor proteins, as well as β-adrenergic receptor density in nonfailing, hypertrophied (left ventricular hypertrophy), failing, and failing left ventricular assist device-supported hearts. We determined functional consequences of protein alterations in isolated contracting muscles from the same hearts. S100A1, sarcoplasmic endoplasmic reticulum Ca(2+)ATPase and phospholamban were normal in left ventricular hypertrophy, but decreased in failing hearts, while ryanodine receptor was unchanged in either group. Baseline muscle contraction was not altered in left ventricular hypertrophy or failing hearts. β-Adrenergic receptor and inotropic response were decreased in failing hearts. In failing left ventricular assist device-supported hearts, S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase showed no recovery, while phospholamban, β-adrenergic receptor, and the inotropic response fully recovered. Conclusions: S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, both key Ca(2+)-regulatory proteins, are decreased in human heart failure, and these changes are not reversed after left ventricular assist device. The clinical significance of these findings for cardiac recovery remains to be addressed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。