Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB

抑制胱天蛋白酶可引发结肠癌细胞发生由 5-氟尿嘧啶诱导的 TNF-α 依赖性坏死性凋亡,该凋亡由 RIP1 激酶和 NF-κB 驱动

阅读:8
作者:M Oliver Metzig, D Fuchs, K E Tagscherer, H-J Gröne, P Schirmacher, W Roth

Abstract

Resistance towards the drug 5-fluorouracil (5-FU) is a key challenge in the adjuvant chemotherapy of colorectal cancer (CRC), and novel targeted approaches are required to improve the therapeutic outcome. Necroptosis is a recently discovered form of programmed cell death, which depends on receptor interacting protein 1 (RIP1) and particularly occurs under caspase-deficient conditions. The targeted induction of necroptosis represents a promising strategy to overcome apoptosis resistance in cancer. The aim of this study was to systematically explore the usage of pan-caspase inhibitors to sensitize resistant CRC cells for 5-FU. We found that pan-caspase inhibitors facilitated 5-FU-induced necroptosis, which was mediated by autocrine secretion of tumor necrosis factor α (TNF-α). TNF-α production was driven by nuclear factor κB (NF-κB) and required RIP1 kinase. In vivo xenograft experiments showed that the novel pan-caspase inhibitor IDN-7314 in combination with 5-FU synergistically blocked tumor growth. Ex vivo experiments with fresh human CRC tissue specimens further indicated that a subgroup of patients could benefit from combinatory treatment. Thereby, elevated levels of secreted TNF-α and expression of components of the necroptotic pathway might help to predict the sensitivity to pro-necroptotic therapies. Together, our results shed new light on the molecular regulation of necroptosis by NF-κB and RIP1. Moreover, we identify necroptotic cell death as an important effector mechanism of 5-FU-mediated anti-tumoral activity. On the basis of this study, we propose pan-caspase inhibitors as a novel approach in the adjuvant chemotherapy of CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。