Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice

氟通过呼吸链复合物异常表达和融合升高引起小鼠肾功能障碍

阅读:5
作者:Hong-Wei Wang, Shi-Quan Zhu, Jing Liu, Cheng-Yi Miao, Yan Zhang, Bian-Hua Zhou

Abstract

A fluoride exposure mouse model is established to evaluate the relationship between mitochondrial respiratory chain complexes and renal dysfunction. Morphological changes in kidney tissues were observed. Renal function and cell proliferation in the kidneys were evaluated. The expression of mitochondrial fusion protein including mitofusin-1 (Mfn1) and optic atrophy 1 (OPA1), and mitochondrial respiratory chain complex subunits, including NDUFV2, SDHA, CYC1 and COX Ⅳ, were detected via real-time polymerase chain reaction, immunohistochemistry staining and Western blot, respectively. Results showed that the structures of renal tubule, renal glomerulus and renal papilla were seriously damaged. Renal function was impaired, and cell proliferation was remarkably inhibited by excessive fluoride in kidney. The mRNA and protein expression levels of Mfn1, OPA1, NDUFV2, CYC1 and COX Ⅳ were significantly increased after excessive fluoride exposure. However, the mRNA and protein expression of SDHA significantly decreased. Overall, our findings revealed that excessive fluoride can damage kidney structure, inhibit renal cell proliferation, interfere with the expression of mitochondrial respiratory chain complexes and elevate mitochondrial fusion. Consequently, renal function disorder occurred.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。