Conclusions
AA, with or without other antioxidants, did not deplete GSNO formed from physiological levels of GSH and nitrite at pH >3. In fact, it favoured GSNO formation, likely through O-nitrosoascorbate. Gastric GSNO could be a NOS-independent source of bioavailable nitrogen oxides.
Methods
GSH and nitrite were reacted with or without 5 mM AA or Resiston (5 mM AA with retinoic acid and α-tocopherol). GSNO was measured by reduction/chemiluminescence and HPLC. AA and reduced thiols were measured colorimetrically. O-Nitrosoascorbate and AA were measured by gas chromatography-mass spectrometry (GC-MS).
Objective
To study the effect of AA on GSNO formation and stability. Materials and
Results
GSNO was formed in saline and gastric samples (pH ∼4.5) from physiological levels of GSH and nitrite. Neither AA nor Resiston decreased [GSNO] at pH >3; rather, they increased [GSNO] (0.12 ± 0.19 μM without AA; 0.42 ± 0.35 μM with AA; and 0.43 ± 0.23 μM with Resiston; n = 4 each; p ≤ 0.05). However, AA compounds decreased [GSNO] at lower pH and with incubation >1 h. Mechanistically, AA, but not dehydroascorbate, increased GSNO formation; and the O-nitrosoascorbate intermediate was formed. Conclusions: AA, with or without other antioxidants, did not deplete GSNO formed from physiological levels of GSH and nitrite at pH >3. In fact, it favoured GSNO formation, likely through O-nitrosoascorbate. Gastric GSNO could be a NOS-independent source of bioavailable nitrogen oxides.
