Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease

对于非酒精性脂肪肝患者来说,肝脏胰岛素抵抗不是选择性通路

阅读:6
作者:Kasper W Ter Horst, Daniel F Vatner, Dongyan Zhang, Gary W Cline, Mariette T Ackermans, Aart J Nederveen, Joanne Verheij, Ahmet Demirkiran, Bart A van Wagensveld, Geesje M Dallinga-Thie, Max Nieuwdorp, Johannes A Romijn, Gerald I Shulman, Mireille J Serlie

Conclusions

Acute increases in lipogenesis in humans with NAFLD are not explained by altered molecular regulation of lipogenesis through a paradoxical increase in lipogenic insulin action; rather, increases in lipogenic substrate availability may be the key.

Methods

We recruited obese subjects who met criteria for bariatric surgery with (n = 16) or without (n = 15) NAFLD and assessed 1) insulin-mediated regulation of hepatic and peripheral glucose metabolism using hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose, 2) fasting and carbohydrate-driven hepatic DNL using deuterated water (2H2O), and 3) hepatocellular insulin signaling in liver biopsy samples collected during bariatric surgery.

Objective

Both glucose and triglyceride production are increased in type 2 diabetes and nonalcoholic fatty liver disease (NAFLD). For decades, the leading hypothesis to explain these paradoxical observations has been selective hepatic insulin resistance wherein insulin drives de novo lipogenesis (DNL) while failing to suppress glucose production. Here, we aimed to test this hypothesis in humans. Research design and

Results

Compared with subjects without NAFLD, those with NAFLD demonstrated impaired insulin-mediated suppression of glucose production and attenuated-not increased-glucose-stimulated/high-insulin lipogenesis. Fructose-stimulated/low-insulin lipogenesis was intact. Hepatocellular insulin signaling, assessed for the first time in humans, exhibited a proximal block in insulin-resistant subjects: Signaling was attenuated from the level of the insulin receptor through both glucose and lipogenesis pathways. The carbohydrate-regulated lipogenic transcription factor ChREBP was increased in subjects with NAFLD. Conclusions: Acute increases in lipogenesis in humans with NAFLD are not explained by altered molecular regulation of lipogenesis through a paradoxical increase in lipogenic insulin action; rather, increases in lipogenic substrate availability may be the key.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。