Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation

β-肾上腺素受体 1、2 或两者均缺失会导致不同的骨表型和对机械刺激的反应

阅读:4
作者:Dominique D Pierroz, Nicolas Bonnet, Estelle N Bianchi, Mary L Bouxsein, Paul A Baldock, René Rizzoli, Serge L Ferrari

Abstract

As they age, mice deficient for the β2-adrenergic receptor (Adrb2(-/-) ) maintain greater trabecular bone microarchitecture, as a result of lower bone resorption and increased bone formation. The role of β1-adrenergic receptor signaling and its interaction with β2-adrenergic receptor on bone mass regulation, however, remains poorly understood. We first investigated the skeletal response to mechanical stimulation in mice deficient for β1-adrenergic receptors and/or β2-adrenergic receptors. Upon axial compression loading of the tibia, bone density, cancellous and cortical microarchitecture, as well as histomorphometric bone forming indices, were increased in both Adrb2(-/-) and wild-type (WT) mice, but not in Adrb1(-/-) nor in Adrb1b2(-/-) mice. Moreover, in the unstimulated femur and vertebra, bone mass and microarchitecture were increased in Adrb2(-/-) mice, whereas in Adrb1(-/-) and Adrb1b2(-/-) double knockout mice, femur bone mineral density (BMD), cancellous bone volume/total volume (BV/TV), cortical size, and cortical thickness were lower compared to WT. Bone histomorphometry and biochemical markers showed markedly decreased bone formation in Adrb1b2(-/-) mice during growth, which paralleled a significant decline in circulating insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGF-BP3). Finally, administration of the β-adrenergic agonist isoproterenol increased bone resorption and receptor activator of NF-κB ligand (RANKL) and decreased bone mass and microarchitecture in WT but not in Adrb1b2(-/-) mice. Altogether, these results demonstrate that β1- and β2-adrenergic signaling exert opposite effects on bone, with β1 exerting a predominant anabolic stimulus in response to mechanical stimulation and during growth, whereas β2-adrenergic receptor signaling mainly regulates bone resorption during aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。