Evolution of neuronal anatomy and circuitry in two highly divergent nematode species

两种高度分化的线虫物种的神经元解剖和回路的进化

阅读:6
作者:Ray L Hong #, Metta Riebesell #, Daniel J Bumbarger, Steven J Cook, Heather R Carstensen, Tahmineh Sarpolaki, Luisa Cochella, Jessica Castrejon, Eduardo Moreno, Bogdan Sieriebriennikov, Oliver Hobert, Ralf J Sommer

Abstract

The nematodes C. elegans and P. pacificus populate diverse habitats and display distinct patterns of behavior. To understand how their nervous systems have diverged, we undertook a detailed examination of the neuroanatomy of the chemosensory system of P. pacificus. Using independent features such as cell body position, axon projections and lipophilic dye uptake, we have assigned homologies between the amphid neurons, their first-layer interneurons, and several internal receptor neurons of P. pacificus and C. elegans. We found that neuronal number and soma position are highly conserved. However, the morphological elaborations of several amphid cilia are different between them, most notably in the absence of 'winged' cilia morphology in P. pacificus. We established a synaptic wiring diagram of amphid sensory neurons and amphid interneurons in P. pacificus and found striking patterns of conservation and divergence in connectivity relative to C. elegans, but very little changes in relative neighborhood of neuronal processes. These findings demonstrate the existence of several constraints in patterning the nervous system and suggest that major substrates for evolutionary novelty lie in the alterations of dendritic structures and synaptic connectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。