Mealworm Ethanol Extract Enhances Myogenic Differentiation and Alleviates Dexamethasone-Induced Muscle Atrophy in C2C12 Cells

黄粉虫乙醇提取物可增强 C2C12 细胞的成肌分化并减轻地塞米松诱导的肌肉萎缩

阅读:7
作者:Ra-Yeong Choi, Bong Sun Kim, Eu-Jin Ban, Minchul Seo, Joon Ha Lee, In-Woo Kim

Abstract

Aging, and other disease-related muscle disorders are serious health problems. Dexamethasone (DEX), a synthetic glucocorticoid, can trigger skeletal muscle atrophy. This study examined the effects of mealworm (Tenebrio molitor larva) ethanol extract (TME) on C2C12 myoblast differentiation and DEX-induced myotube atrophy. TME induced myotube formation compared to the differentiation medium (DM) group. TME also significantly increased the mRNA expression of muscle creatine kinase (CKm) and myogenic regulatory factors (MRFs), such as myogenin (MyoG), myogenic factor (Myf)5, and MRF4 (Myf6). TME dramatically increased the muscle-specific protein, MyoG, compared to the control, whereas the expression of myogenic differentiation 1 (MyoD) remained unchanged. It also activated the mammalian target of rapamycin (mTOR) signaling pathway. In the DEX-induced muscle atrophy C2C12 model, TME reduced the gene expression of atrogin-1, muscle RING finger protein-1 (MuRF-1), and myostatin, which are involved in protein degradation in skeletal muscles. Furthermore, TME elevated the phosphorylation of forkhead box O3 (FoxO3α) and protein kinase B (Akt). These findings suggest that TME can enhance myotube hypertrophy by regulating the mTOR signaling pathway, and can rescue DEX-induced muscle atrophy by alleviating atrophic muscle markers mediated by Akt activation. Thus, TME can be a potential therapeutic agent for treating muscle weakness and atrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。