Abstract
CTX-M-type extended-spectrum ß-lactamases (ESBL) are widespread among Enterobacterales worldwide. The most common variant is CTX-M-15 hydrolyzing ceftazidime at high rate, but sparing carbapenems. We identified here CTX-M-33, a point mutant derivative of CTX-M-15 (Asp to Ser substitution at Ambler position 109), exhibiting a low carbapenemase activity. ß-Lactamase CTX-M-33 was identified in a Klebsiella pneumoniae isolate belonging to ST405, lacking the outer membrane protein OmpK36, that was resistant to broad-spectrum cephalosporins and ß-lactam/ß-lactamase inhibitor combinations, and displayed a decreased susceptibility to carbapenems. Comparative hydrolytic activity assays showed that CTX-M-33 hydrolyzed ceftazidime at a lower level than CTX-M-15, but significantly hydrolyzed meropenem. In addition, CTX-M-33 showed higher Mutant Prevention Concentration values and wider mutant selection window in presence of meropenem, in accordance with its observed hydrolytic properties. We identified here the very first CTX-M enzyme possessing a weak carbapenemase activity, that may correspond to an emerging phenomenon when considering its possibility to evolve from the widespread ESBL CTX-M-15.
