Exploring the Mechanism of Panax notoginseng Saponins against Alzheimer's Disease by Network Pharmacology and Experimental Validation

网络药理学与实验验证探索三七总皂苷抗阿尔茨海默病的作用机制

阅读:9
作者:Yixuan Jiang, Shanliang Li, Xiaoqin Xie, Hemei Li, Panling Huang, Bocun Li, Lini Huo, Jing Zhong, Yuqing Li, Xing Xia

Background

Panax notoginseng saponins (PNS) have been used for neurodegenerative disorders such as cerebral ischemia and Alzheimer's disease (AD). Although increasing evidences show the neuron protective effects of PNS, the vital compounds and their functional targets remain elusive. To explore the potential functional ingredients of PNS for the AD treatment and their molecular mechanisms, an in vitro neuron injured model induced by Aβ was investigated, and the potential mechanism was predicted by network pharmacology approach and validated by molecular biology

Conclusions

Collectively, the protective effects of PNS on AD-neuron injury are related to the inhibition of mTOR and autophagy activation.

Methods

Network pharmacology approach was used to reveal the relationship between ingredient-target disease and function-pathway of PNS on the treatment of AD. The active ingredients of PNS were collected from TCMSP, PubChem database, and literature mining in PubMed database. DrugBank and GeneCards database were used to predict potential targets for AD. The STRING database was performed to reveal enrichment of these target proteins, protein-protein interactions, and related pathways. Networks were visualized by utilizing Cytoscape software. The enrichment analysis was performed by the DAVID database. Finally, neuroprotective effect and predictive mechanism of PNS were investigated in an in vitro AD model established by Aβ 25-35-treated PC12 cells.

Results

An ingredient-target disease and function-pathway network demonstrated that 38 active ingredients were derived from PNS modulated 364 common targets shared by PNS and AD. GO and KEGG analysis, further clustering analysis, showed that mTOR signaling targets were associated with the neuroprotective effects of PNS. In Aβ-treated PC12 cells, PNS treatment improved neuroprotective effect, including mTOR inhibition and autophagy activation. Conclusions: Collectively, the protective effects of PNS on AD-neuron injury are related to the inhibition of mTOR and autophagy activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。