Mechanical and Hydration Characteristics of Stabilized Gold Mine Tailings Using a Sustainable Industrial Waste-Based Binder

使用可持续工业废料粘合剂稳定金矿尾矿的机械和水化特性

阅读:11
作者:Zhenkai Pan, Shaohua Hu, Chao Zhang, Tong Zhou, Guowei Hua, Yuan Li, Xiaolin Lv

Abstract

Sustainable resource utilization of tailings is a long-term challenge. Therefore, a novel waste-based binder is proposed in this study to stabilize/solidify gold mine tailings (GMTs). This binder is composed of fly ash (FA), ground blast furnace slag (GBFS), and metakaolin (MK) activated with mixed calcium carbide residue (CCR) as well as pure reagent grade chemical, sodium hydroxide (SH, NaOH), and plaster gypsum (PG, CaSO4·2H2O). The mechanical properties and hydration of stabilized tailings with curing period were investigated. Tests included triaxial compression test and nitrogen adsorption to evaluate the strength of the stabilized tailings and microstructure. The results show that the addition of the waste-based binder yields significant improvement in shear strength. Strain softening occurred for all cured samples, and a local shear band can be observed in all failed stabilized samples. Based on the relationship between strength and curing period, it can be speculated that the hydration reaction of the sample ends after around 40 days of curing. A bimodal pore-size distribution was observed in all solidified/stabilized samples. FTIR and 27Al MAS-NMR were used to analyze hydration products. The strength improvement of stabilized tailings was mainly attributed to the formation of ettringite and C-S-H gels after various polymerization reactions. These new hydrates bind tailings particles and fill the pores to form a more stable structure, which supplied superior mechanical properties. This paper can provide a theoretical basis for exploring the application of the industrial waste-based binder to modify the mechanical properties of gold tailings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。