Transcriptome analysis reveals multiple targets of erythritol-related transcription factor EUF1 in unconventional yeast Yarrowia Lipolytica

转录组分析揭示非常规酵母解脂耶氏酵母中赤藓糖醇相关转录因子 EUF1 的多个靶点

阅读:8
作者:D A Rzechonek, M Szczepańczyk, I Borodina, C Neuvéglise, A M Mirończuk

Background

Erythritol is a four-carbon polyol with an unclear role in metabolism of some unconventional yeasts. Its production has been linked to the osmotic stress response, but the mechanism of stress protection remains unclear. Additionally, erythritol can be used as a carbon source. In the yeast Yarrowia lipolytica, its assimilation is activated by the transcription factor Euf1. The study investigates whether this factor can link erythritol to other processes in the cell.

Conclusions

These findings may be particularly relevant given the increasing use of erythritol-induced promoters in genetic engineering of Y. lipolytica. Moreover, use of this yeast in biotechnological processes often takes place under osmotic stress conditions. Erythritol might be produce as a by-product, thus better understanding of its influence on cell metabolism could facilitate processes optimization.

Results

The research was performed on two closely related strains of Y. lipolytica: MK1 and K1, where strain K1 has no functional Euf1. Cultures were carried out in erythritol-containing and erythritol-free media. Transcriptome analysis revealed the effect of Euf1 on the regulation of more than 150 genes. Some of these could be easily connected with different aspects of erythritol assimilation, such as: utilization pathway, a new potential isoform of transketolase, or polyol transporters. However, many of the upregulated genes have never been linked to metabolism of erythritol. The most prominent examples are the degradation pathway of branched-chain amino acids and the glyoxylate cycle. The high transcription of genes affected by Euf1 is still dependent on the erythritol concentration in the medium. Moreover, almost all up-regulated genes have an ATGCA motif in the promoter sequence. Conclusions: These findings may be particularly relevant given the increasing use of erythritol-induced promoters in genetic engineering of Y. lipolytica. Moreover, use of this yeast in biotechnological processes often takes place under osmotic stress conditions. Erythritol might be produce as a by-product, thus better understanding of its influence on cell metabolism could facilitate processes optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。