Early Enteral Nutrition Preserves Intestinal Barrier Function through Reducing the Formation of Neutrophil Extracellular Traps (NETs) in Critically Ill Surgical Patients

早期肠内营养通过减少危重外科患者中性粒细胞胞外陷阱 (NET) 的形成来维持肠道屏障功能

阅读:6
作者:Qiongyuan Hu, Huajian Ren, Zhiwu Hong, Chenyang Wang, Tao Zheng, Yanhan Ren, Kai Chen, Song Liu, Gefei Wang, Guosheng Gu, Xiuwen Wu, Jianan Ren

Background

The gut was suggested as the driver of critical illness and organ injury. Recently, excessive formation of neutrophil extracellular traps (NETs) was associated with mucosal inflammation. Direct investigation of intestinal mucosa is essential to illuminate the potential mechanism of gut barrier in critically ill patients. We hypothesized that early enteral nutrition (EN) could decrease intestinal NETs and maintain the gut barrier.

Conclusion

The intestinal barrier is disrupted in the human gut during critical illness. Our data suggests that an increased NET structure was showed in the gut of critically ill surgical patients, and early EN treatment was associated with the reduction of NET formation and the preservation of mucosal immunity.

Methods

Intestinal biopsies were obtained using biopsy forceps from critically ill surgical patients complicated with enterocutaneous fistula. Expressions of tight junction (TJ) proteins, mucosal inflammation, and apoptosis were evaluated. Moreover, NET-associated proteins were evaluated in intestinal specimens of patients by Western blot and immunofluorescence analysis.

Results

The intestinal barrier was significantly impaired in critically ill patients receiving early total parenteral nutrition (TPN), evidenced by intestinal villi atrophy, inflammatory infiltration, increased enterocyte apoptosis, and abnormal TJ expressions. Early EN significantly alleviated these intestinal injuries. In addition, we observed increased formation of the NET structure and elevated expressions of NET-associated proteins in intestines of critically ill surgical patients. Early EN was associated with the diminished presence of NETs and reduced expression of NET-associated proteins. Mechanically, analysis of the TLR4 pathway showed a significant increase in TLR4, NFκB, and MAPK signaling in patients receiving TPN when compared to those receiving early EN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。