Mitochondrial calcium uniporter promotes mitophagy by regulating the PINK1/Parkin pathway in caerulein‑treated pancreatic ductal epithelial cells in vitro

线粒体钙单向转运体通过调节 PINK1/Parkin 通路促进体外经青霉素处理的胰腺导管上皮细胞中的线粒体自噬

阅读:5
作者:Yu Lei, Hui-Ying Yang, Nuo Meng, Ying-Ying Qin, Meng-Tao Xu, Xue-Lian Xiang, Li Liu, Guo-Du Tang

Abstract

The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。