Peroxisome Proliferator-Activated Receptor α Activation Protects Retinal Ganglion Cells in Ischemia-Reperfusion Retinas

过氧化物酶体增殖激活受体 α 激活保护缺血再灌注视网膜中的视网膜神经节细胞

阅读:5
作者:Fei Yao, Xuan Zhang, Xueyan Yao, Xiaohua Ren, Xiaobo Xia, Jian Jiang, Lexi Ding

Conclusion

Peroxisome proliferator-activated receptor α activation by FA is protective against RGC loss in retinal IR condition, which may occur by restoring PPARα expression, inhibiting activation of glial cells, and suppressing retinal inflammation. All these findings indicate the translational potential of FA in treating IR-related retinopathy.

Methods

Fenofibric acid treatment was applied to the Sprague-Dawley rats with IR and retinal cell line 28 cells with oxygen-glucose deprivation (OGD) (an in vitro model of IR). Western blotting, real-time PCR, and immunofluorescence were used to examine the expression levels of PPARα, glial fibrillary acidic protein (GFAP), and cyclooxygenase-2 (COX2). Hematoxylin and eosin (HE) staining, propidium iodide (PI) staining, retrograde tracing, and flash visual-evoked potential (FVEP) were applied to assess RGC injury and visual function.

Objective

Retinal ischemia-reperfusion (IR) leads to massive loss of retinal ganglion cells (RGC) and characterizes several blind-causing ophthalmic diseases. However, the mechanism related to retinal IR is controversial, and a drug that could prevent the RGC loss caused by IR is still lacking. This study aimed to investigate the role of endogenous retinal peroxisome proliferator-activated receptor (PPAR)α and the therapeutic effect of its agonist, fenofibric acid (FA), in IR-related retinopathy. Materials and

Results

Retinal IR down-regulated PPARα expression in vitro and in vivo. Peroxisome proliferator-activated receptor α activation by FA promoted survival of RGCs, mitigated thinning of the ganglion cell complex, and decreased the latency of positive waves of FVEPs after IR injury. Further, FA treatment enhanced the expression of endogenous PPARα and suppressed the expression of GFAP and COX2 significantly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。