Chemical Synthesis and Biological Evaluation of 3-Substituted Estrone/Estradiol Derivatives as 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors Acting via a Reverse Orientation of the Natural Substrate Estrone

3-取代雌酮/雌二醇衍生物作为 17β-羟基类固醇脱氢酶 1 型抑制剂的化学合成和生物学评价,通过天然底物雌酮的反向取向起作用

阅读:7
作者:Adrien Djiemeny Ngueta, Jenny Roy, René Maltais, Donald Poirier

Abstract

Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17β-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17β-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17β-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 μM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 μM, respectively). Molecular docking allowed us to identify key interactions with 17β-HSD1 and to highlight these new inhibitors' actions through an opposite orientation than natural enzyme substrate E1's classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。