Engineering advanced neural tissue constructs to mitigate acute cerebral inflammation after brain transplantation in rats

设计先进的神经组织结构以减轻大鼠脑移植后的急性脑炎症

阅读:7
作者:Volha Liaudanskaya, Dennis Jgamadze, Alexander N Berk, David J Bischoff, Ben J Gu, Hannah Hawks-Mayer, Michael J Whalen, H Isaac Chen, David L Kaplan

Abstract

Stroke, traumatic brain injuries, and other similar conditions often lead to significant loss of functional brain tissue and associated disruption of neuronal signaling. A common strategy for replacing lost neurons is the injection of dissociated neural stem cells or differentiated neurons. However, this method is unlikely to be suitable for replacing large brain cavities, and the resulting distribution of neurons may lack the necessary architecture to support appropriate brain function. Engineered neural tissues may be a viable alternative. Cell death is a prominent concern in neuronal grafting studies, a problem that could be magnified with the transplantation of engineered neural tissues. Here, we examined the effect of one contributor to cell death, acute cerebral inflammation, on neuronal survival after the transplantation of bioengineered constructs based on silk scaffolds. We found evidence of a high degree of inflammation and poor neuronal survival after introducing engineered constructs into the motor cortex of rats. Integrating a corticosteroid (methylprednisolone) into the constructs resulted in significantly improved neuron survival during the acute phase of inflammation. The improved construct survival was associated with decreased markers of inflammation and an anti-inflammatory state of the immune system due to the steroid treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。