Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo

体内蛋白质稳态不受干扰的情况下脂质不平衡激活内质网未折叠蛋白反应

阅读:5
作者:Nicole S Hou, Aljona Gutschmidt, Daniel Y Choi, Keouna Pather, Xun Shi, Jennifer L Watts, Thorsten Hoppe, Stefan Taubert

Abstract

The Mediator is a conserved transcriptional coregulator complex required for eukaryotic gene expression. In Caenorhabditis elegans, the Mediator subunit mdt-15 is essential for the expression of genes involved in fatty acid metabolism and ingestion-associated stress responses. mdt-15 loss of function causes defects in reproduction and mobility and shortens lifespan. In the present study, we find that worms with mutated or depleted mdt-15 (mdt-15 worms) exhibit decreased membrane phospholipid desaturation, especially in phosphatidylcholine. Accordingly, mdt-15 worms exhibit disturbed endoplasmic reticulum (ER) homeostasis, as indicated by a constitutively activated ER unfolded protein response (UPR(ER)). Activation of this stress response is only partially the consequence of reduced membrane lipid desaturation, implicating other mdt-15-regulated processes in maintaining ER homeostasis. Interestingly, mdt-15 inactivation or depletion of the lipid metabolism enzymes stearoyl-CoA-desaturases (SCD) and S-adenosyl methionine synthetase (sams-1) activates the UPR(ER) without promoting misfolded protein aggregates. Moreover, these worms exhibit wild-type sensitivity to chemically induced protein misfolding, and they do not display synthetic lethality with mutations in UPR(ER) genes, which cause protein misfolding. Therefore, the constitutively activated UPR(ER) in mdt-15, SCD, and sams-1 worms is not the consequence of proteotoxic stress but likely is the direct result of changes in ER membrane fluidity and composition. Together, our data suggest that the UPR(ER) is induced directly upon membrane disequilibrium and thus monitors altered ER homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。