Hypoxia-Inducible Factor-2α Reprograms Liver Macrophages to Protect Against Acute Liver Injury Through the Production of Interleukin-6

缺氧诱导因子-2α通过产生白细胞介素-6重新编程肝巨噬细胞以防止急性肝损伤

阅读:5
作者:Rachel Y Gao, Meng Wang, Qihui Liu, Dechun Feng, Yankai Wen, Yang Xia, Sean P Colgan, Holger K Eltzschig, Cynthia Ju

Aims

Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure, resulting in death or liver transplantation in more than one third of patients in the United States. The effectiveness of the only antidote, N-acetylcysteine, declines rapidly after APAP ingestion, long before patients are admitted to the clinic with symptoms of severe liver injury. The direct hepatotoxicity of APAP triggers a cascade of innate immune responses that may exacerbate or limit the progression of tissue damage. A better understanding of this complex mechanism will help uncover targets for therapeutic interventions. Approach and

Approach and results

We observed that APAP challenge caused stabilization of hypoxia-inducible factors (HIFs) in the liver and hepatic macrophages (MΦs), particularly HIF-2α. Genetic deletion of the HIF-2α gene in myeloid cells (HIF-2αmye/- ) markedly exacerbated APAP-induced liver injury (AILI) without affecting APAP bioactivation and detoxification. In contrast, hepatic and serum levels of the hepatoprotective cytokine interleukin 6 (IL-6), its downstream signal transducer and transcription factor 3 activation in hepatocytes, as well as hepatic MΦ IL-6 expression were markedly reduced in HIF-2αmye/- mice compared to wild-type mice post-APAP challenge. In vitro experiments revealed that hypoxia induced IL-6 production in hepatic MΦs and that such induction was abolished in HIF-2α-deleted hepatic MΦs. Restoration of IL-6 by administration of exogenous IL-6 ameliorated AILI in HIF-2αmye/- mice. Finally, IL-6-mediated hepatoprotection against AILI was abolished in hepatocyte-specific IL-6 receptor knockout mice. Conclusions: The data demonstrate that APAP treatment leads to HIF-2α stabilization in hepatic MΦs and that HIF-2α subsequently reprograms hepatic MΦs to produce the hepatoprotective cytokine IL-6, thereby ameliorating AILI.

Background and aims

Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure, resulting in death or liver transplantation in more than one third of patients in the United States. The effectiveness of the only antidote, N-acetylcysteine, declines rapidly after APAP ingestion, long before patients are admitted to the clinic with symptoms of severe liver injury. The direct hepatotoxicity of APAP triggers a cascade of innate immune responses that may exacerbate or limit the progression of tissue damage. A better understanding of this complex mechanism will help uncover targets for therapeutic interventions. Approach and

Conclusions

The data demonstrate that APAP treatment leads to HIF-2α stabilization in hepatic MΦs and that HIF-2α subsequently reprograms hepatic MΦs to produce the hepatoprotective cytokine IL-6, thereby ameliorating AILI.

Results

We observed that APAP challenge caused stabilization of hypoxia-inducible factors (HIFs) in the liver and hepatic macrophages (MΦs), particularly HIF-2α. Genetic deletion of the HIF-2α gene in myeloid cells (HIF-2αmye/- ) markedly exacerbated APAP-induced liver injury (AILI) without affecting APAP bioactivation and detoxification. In contrast, hepatic and serum levels of the hepatoprotective cytokine interleukin 6 (IL-6), its downstream signal transducer and transcription factor 3 activation in hepatocytes, as well as hepatic MΦ IL-6 expression were markedly reduced in HIF-2αmye/- mice compared to wild-type mice post-APAP challenge. In vitro experiments revealed that hypoxia induced IL-6 production in hepatic MΦs and that such induction was abolished in HIF-2α-deleted hepatic MΦs. Restoration of IL-6 by administration of exogenous IL-6 ameliorated AILI in HIF-2αmye/- mice. Finally, IL-6-mediated hepatoprotection against AILI was abolished in hepatocyte-specific IL-6 receptor knockout mice. Conclusions: The data demonstrate that APAP treatment leads to HIF-2α stabilization in hepatic MΦs and that HIF-2α subsequently reprograms hepatic MΦs to produce the hepatoprotective cytokine IL-6, thereby ameliorating AILI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。