Novel Nanoconjugate of Apamin and Ceftriaxone for Management of Diabetic Wounds

蜂毒明和头孢曲松的新型纳米结合物用于治疗糖尿病伤口

阅读:4
作者:Abdullah A Alamoudi, Awaad S Alharbi, Ashraf B Abdel-Naim, Shaimaa M Badr-Eldin, Zuhier A Awan, Solomon Z Okbazghi, Osama A A Ahmed, Nabil A Alhakamy, Usama A Fahmy, Ahmed Esmat

Abstract

Diabetic hyperglycemia delays wound healing, leading to serious consequences. Topical antibiotics can reduce the risk of a wound infection during healing; nevertheless, the microbial fight against antibiotics brings about public health challenges. Anti-microbial peptides (AMPs) belong to a novel class of drug that is used to prevent and treat systemic and topical infections. The aim of the current work was to achieve better wound healing in diabetic rats by conjugating the anti-microbial peptide "apamin" (APA) with the broad-spectrum antibiotic "ceftriaxone" (CTX) to form a nanocomplex. The CTX-APA nanoconjugate formulation was optimized using a Box-Behnken design. The optimized CTX-APA nanoconjugate formulation was evaluated for its size and zeta potential, and was then examined using transmission electron microscopy (TEM). The CTX-APA nanoconjugate was loaded onto a hydroxypropyl methylcellulose (2% w/v)-based hydrogel. It was observed that the application of the CTX-APA nanocomplex on the wounded skin of diabetic rats accelerated the regeneration of the epithelium, granulation tissue formation, epidermal proliferation, and keratinization. The nanocomplex was capable of significantly reducing the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), while increasing the expression of transforming growth factor beta-1 (TGF-β1) as well as the angiogenic markers: hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Conclusively, the application of an ion-paired CTX-APA nanocomplex enhances wound healing in diabetic rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。