Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors

细胞锌缺乏会损害正在发育的红细胞祖细胞中的血红素生物合成

阅读:5
作者:Juyoung Kim, Jaekwon Lee, Moon-Suhn Ryu

Abstract

Anemia is the most prevalent nutrition-related disorder worldwide. Zinc is an essential trace element for various biological processes in the body, and zinc deficiency has been associated with anemia in humans. However, the molecular mechanisms by which zinc availability alters red blood cell development remain uncertain. The present study identifies the essentiality of zinc during erythroid development, particularly for normal heme biosynthesis. G1E-ER4 mouse cells were used as an in vitro model of terminal erythroid differentiation, which featured elevated cellular zinc content by development. Restriction of zinc import compromised the rate of heme and α-globin production and, thus, the hemoglobinization of the erythroid progenitors. Heme is synthesized by the incorporation of iron into protoporphyrin. The lower heme production under zinc restriction was not due to changes in iron but was attributable to less porphyrin synthesis. The requirement of adequate zinc for erythroid heme metabolism was confirmed in another erythropoietic cell model, MEL-DS19. Additionally, we found that a conventional marker of iron deficiency anemia, the ZnPP-to-heme ratio, responded to zinc restriction differently from iron deficiency. Collectively, our findings define zinc as an essential nutrient integral to erythroid heme biosynthesis and, thus, a potential therapeutic target for treating anemia and other erythrocyte-related disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。