Lats1 suppresses centrosome overduplication by modulating the stability of Cdc25B

Lats1通过调节Cdc25B的稳定性来抑制着丝粒过度复制

阅读:5
作者:Satomi Mukai, Norikazu Yabuta, Kaori Yoshida, Ayumi Okamoto, Daisaku Miura, Yasuhide Furuta, Takaya Abe, Hiroshi Nojima

Abstract

Numerical aberration of the centrosome results in chromosome missegregation, eventually leading to chromosomal instability, a hallmark of human tumor malignancy. Large tumor suppressors 1 and 2 (Lats1 and Lats2) are central kinases in the Hippo pathway and regulate development and tumorigenesis by coordinating the balance between cell proliferation and apoptosis. Importantly, Lats1 and Lats2 also play pivotal roles in cell cycle checkpoint and mitosis. The Lats proteins localize at centrosomes, but their centrosomal functions remain elusive. Here, we generated Lats1-null knockout (Lats1(-/-)) mice and established Lats1-null mouse embryonic fibroblasts (MEFs). In Lats1(-/-) MEFs, centrosomes were markedly overduplicated, leading to severe mitotic defects such as chromosome missegregation and cytokinesis failure. We also found that Lats1 physically interacts with Cdc25B phosphatase that localizes both at the centrosome and in the nucleus and regulates the linkage between the centrosome cycle and mitotic progression. Although Lats1 did not phosphorylate Cdc25B, loss of Lats1 in MEFs caused abnormal accumulation of Cdc25B protein and hyperactivation of Cdk2 toward nucleophosmin (NPM/B23), one of the licensing factors involved in centriole duplication. Taken together, these data suggest that Lats1 regulates Cdc25B protein level and subsequent Cdk2 activity, thereby suppressing centrosome overduplication during interphase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。