Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer's disease

金合欢素对阿尔茨海默病果蝇模型行为和眼部形态的影响及其可能的作用机制

阅读:7
作者:Xue Wang, Haribalan Perumalsamy, Hyung Wook Kwon, Young-Eun Na, Young-Joon Ahn

Abstract

The human β-amyloid (Aβ) cleaving enzyme (BACE-1) is a target for Alzheimer's disease (AD) treatments. This study was conducted to determine if acacetin extracted from the whole Agastache rugosa plant had anti-BACE-1 and behavioral activities in Drosophila melanogaster AD models and to determine acacetin's mechanism of action. Acacetin (100, 300, and 500 μM) rescued amyloid precursor protein (APP)/BACE1-expressing flies and kept them from developing both eye morphology (dark deposits, ommatidial collapse and fusion, and the absence of ommatidial bristles) and behavioral (motor abnormalities) defects. The reverse transcription polymerase chain reaction analysis revealed that acacetin reduced both the human APP and BACE-1 mRNA levels in the transgenic flies, suggesting that it plays an important role in the transcriptional regulation of human BACE-1 and APP. Western blot analysis revealed that acacetin reduced Aβ production by interfering with BACE-1 activity and APP synthesis, resulting in a decrease in the levels of the APP carboxy-terminal fragments and the APP intracellular domain. Therefore, the protective effect of acacetin on Aβ production is mediated by transcriptional regulation of BACE-1 and APP, resulting in decreased APP protein expression and BACE-1 activity. Acacetin also inhibited APP synthesis, resulting in a decrease in the number of amyloid plaques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。