Programmable Extracellular Vesicles for Macromolecule Delivery and Genome Modifications

用于大分子递送和基因组修饰的可编程细胞外囊泡

阅读:11
作者:Xiaojuan Zhang, Quanbin Xu, Zhike Zi, Zeyu Liu, Chun Wan, Lauren Crisman, Jingshi Shen, Xuedong Liu

Abstract

Getting large macromolecules through the plasma membrane and endosomal barriers remains a major challenge. Here, we report a generalizable method of delivering proteins and ribonucleoproteins (RNPs) to cells in vitro and mouse liver tissue in vivo with engineered ectosomes. These ectosomes, referred to as "Gectosomes," are designed to co-encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP complementation. We found that this method enables active cargo loading, improves the specific activity of cargo delivery, and facilitates Gectosome purification. Experimental and mathematical modeling analyses suggest that active cargo loading reduces non-specific encapsulation of cellular proteins, particularly nucleic-acid-binding proteins. Using Gectosomes that encapsulate Cre, Ago2, and SaCas9, we demonstrate their ability to execute designed modifications of endogenous genes in cell lines in vitro and mouse liver tissue in vivo, paving the way toward applications of this technology for the treatment of a wide range of human diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。