Sustained granule cell activity disinhibits juvenile mouse cerebellar stellate cells through presynaptic mechanisms

持续的颗粒细胞活性通过突触前机制解除对幼鼠小脑星状细胞的抑制

阅读:7
作者:Simone Astori, Georg Köhr

Abstract

GABA release from cerebellar molecular layer interneurons can be modulated by presynaptic glutamate and/or GABA B receptors upon perfusing the respective agonists. However, it is unclear how release and potential spillover of endogenous transmitter lead to activation of presynaptic receptors. High frequency firing of granule cells, as observed in vivo upon sensory stimulation, could lead to glutamate and/or GABA spillover. Here, we established sustained glutamatergic activity in the granule cell layer of acute mouse cerebellar slices and performed 190 paired recordings from connected stellate cells. Train stimulation at 50 Hz reduced by about 30% the peak amplitude of IPSCs evoked by brief depolarization of the presynaptic cell in 2-week-old mice. A presynaptic mechanism was indicated by changes in failure rate, paired-pulse ratio and coefficient of variation of evoked IPSCs. Furthermore, two-photon Ca2+ imaging in identified Ca2+ hot spots of stellate cell axons confirmed reduced presynaptic Ca2+ influx after train stimulation within the granular layer. Pharmacological experiments indicated that glutamate released from parallel fibres activated AMPARs in stellate cells, evoking GABA release from surrounding cells. Consequential GABA spillover activated presynaptic GABA B Rs, which reduced the amplitude of eIPSCs. Two-thirds of the total disinhibitory effect were mediated by GABA B Rs, one-third being attributable to presynaptic AMPARs. This estimation was confirmed by the observation that bath applied baclofen induced a more pronounced reduction of evoked IPSCs than kainate. Granule cell-mediated disinhibition persisted at near-physiological temperature but was strongly diminished in 3-week-old mice. At this age, GABA release probability was not reduced and presynaptic GABA B Rs were still detectable, but GABA uptake appeared to be advanced, attenuating GABA spillover. Thus, sustained granule cell activity modulates stellate cell-to-stellate cell synapses, involving transmitter spillover during a developmentally restricted period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。