The expression and function of glutamate aspartate transporters in Bergmann glia are decreased in neuronal nitric oxide synthase-knockout mice during postnatal development

神经元型一氧化氮合酶基因敲除小鼠出生后发育过程中 Bergmann 胶质细胞中谷氨酸天冬氨酸转运蛋白的表达和功能降低

阅读:9
作者:Vasiliki Tellios, Matthew J E Maksoud, Wei-Yang Lu

Abstract

Bergmann glia (BG) predominantly use glutamate/aspartate transporters (GLAST) for glutamate uptake in the cerebellum. Recently, nitric oxide (NO) treatment has been shown to upregulate GLAST function and increase glutamate uptake in vitro. We previously discovered that neuronal nitric oxide synthase knockout (nNOS-/- ) mice displayed structural and functional neuronal abnormalities in the cerebellum during development, in addition to previously reported motor deficits. Although these developmental deficits have been identified in the nNOS-/- cerebellum, it is unknown whether BG morphology and GLAST expression are also affected in the absence of nNOS in vivo. This study is the first to characterize BG morphology and GLAST expression during development in nNOS-/- mice using immunohistochemistry and western blotting across postnatal development. Results showed that BG in nNOS-/- mice exhibited abnormal morphology and decreased GLAST expression compared with wildtype (WT) mice across postnatal development. Treating ex vivo WT cerebellar slices with the NOS inhibitor L-NAME decreased GLAST expression while treating nNOS-/- slices with the slow-release NO-donor NOC-18 increased GLAST expression when compared with their respective controls. In addition, treating primary BG isolated from WT mice with the selective nNOS inhibitor 7N decreased the membrane expression of GLAST and influx of Ca2+ /Na+ , while treating nNOS-/- BG with SNAP increased the membrane expression of GLAST and Ca2+ /Na+ influx. Moreover, the effects of SNAP on GLAST expression and Ca2+ /Na+ influx in nNOS-/- BG were significantly reduced by a PKG inhibitor. Together, these results reveal a novel role for nNOS/NO signaling in BG development, regulated by a PKG-mediated mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。