Novel PPARγ Modulator GED-0507-34 Levo Ameliorates Inflammation-driven Intestinal Fibrosis

新型 PPARγ 调节剂 GED-0507-34 Levo 改善炎症驱动的肠道纤维化

阅读:7
作者:Silvia Speca, Christel Rousseaux, Caroline Dubuquoy, Florian Rieder, Antonella Vetuschi, Roberta Sferra, Ilaria Giusti, Benjamin Bertin, Laurent Dubuquoy, Eugenio Gaudio, Pierre Desreumaux, Giovanni Latella

Background

Intestinal fibrosis is mainly associated with Crohn's disease and is defined as a progressive and excessive deposition of extracellular matrix components. No specific antifibrotic therapies are available. In this study, we evaluate the antifibrotic effect of a novel 5-ASA analog able to activate the peroxisome proliferator-activated receptor γ, named GED-0507-34 Levo.

Conclusions

GED ameliorates intestinal fibrosis in dextran sulfate sodium-induced chronic colitis in mice and regulates major profibrotic cellular and molecular mechanisms.

Methods

Colonic fibrosis was induced in 110 C57BL/6 mice by 3 cycles of 2.5% (wt/vol) dextran sulfate sodium administration for 6 weeks. The preventive effects of oral daily GED (30 mg · kg(-1) · d(-1)) administration were evaluated using a macroscopic and histological score and also through biological endpoints. Expression of main markers of myofibroblasts activation was determined in transforming growth factor (TGF-β)-stimulated intestinal fibroblasts and epithelial cells.

Results

GED improved macroscopic and microscopic intestinal lesions in dextran sulfate sodium-treated animals and reduced the profibrotic gene expression of Acta2, COL1a1, and Fn1 by 1.48-folds (P < 0.05), 1.93-folds (P < 0.005), and 1.03-fold (P < 0.05), respectively. It reduced protein levels of main markers of fibrosis (α-SMA and Collagen I-II) and the main TGF-β/Smad pathway components. GED also decreased the interleukin-13 and connective tissue growth factor expression by 1.89-folds (P < 0.05) and 2.2-folds (P < 0.005), respectively. GED inhibited TGF-β-induced activation of both fibroblast and intestinal epithelial cell lines, by regulating mRNA expression of α-SMA and fibronectin, and restoring the TGF-β-induced loss of intestinal epithelial cell markers. GED treatment also reduced the TGF-β and ACTA1 expression in primary human intestinal fibroblasts from ulcerative colitis patients. Conclusions: GED ameliorates intestinal fibrosis in dextran sulfate sodium-induced chronic colitis in mice and regulates major profibrotic cellular and molecular mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。