Targeting histone K4 trimethylation for treatment of cognitive and synaptic deficits in mouse models of Alzheimer's disease

针对组蛋白 K4 三甲基化治疗阿尔茨海默病小鼠模型中的认知和突触缺陷

阅读:6
作者:Qing Cao, Wei Wang, Jamal B Williams, Fengwei Yang, Zi-Jun Wang, Zhen Yan

Abstract

Epigenetic aberration is implicated in aging and neurodegeneration. Using postmortem tissues from patients with Alzheimer's disease (AD) and AD mouse models, we have found that the permissive histone mark H3K4me3 and its catalyzing enzymes are significantly elevated in the prefrontal cortex (PFC). Inhibiting H3K4-specific methyltransferases with the compound WDR5-0103 leads to the substantial recovery of PFC synaptic function and memory-related behaviors in AD mice. Among the up-regulated genes reversed by WDR5-0103 treatment in PFC of AD mice, many have the increased H3K4me3 enrichment at their promoters. One of the identified top-ranking target genes, Sgk1, which encodes serum and glucocorticoid-regulated kinase 1, is also significantly elevated in PFC of patients with AD. Administration of a specific Sgk1 inhibitor reduces hyperphosphorylated tau protein, restores PFC glutamatergic synaptic function, and ameliorates memory deficits in AD mice. These results have found a novel epigenetic mechanism and a potential therapeutic strategy for AD and related neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。