A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics

一种新的水中毒实验小鼠模型,具有持续性颅内压升高和轻度低钠血症,且无抗利尿剂的副作用

阅读:4
作者:Luca Bordoni, Eugenio Gutiérrez Jiménez, Søren Nielsen, Leif Østergaard, Sebastian Frische

Abstract

The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg-1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。