miR-199a Downregulation as a Driver of the NOX4/HIF-1α/VEGF-A Pathway in Thyroid and Orbital Adipose Tissues from Graves' Patients

miR-199a 下调作为 Graves 病患者甲状腺和眼眶脂肪组织中 NOX4/HIF-1α/VEGF-A 通路的驱动因素

阅读:10
作者:Julie Craps, Virginie Joris, Lelio Baldeschi, Chantal Daumerie, Alessandra Camboni, Antoine Buemi, Benoit Lengelé, Catherine Behets, Antonella Boschi, Michel Mourad, Marie-Christine Many, Chantal Dessy

Abstract

Graves' disease (GD) is an autoimmune thyroiditis often associated with Graves' orbitopathy (GO). GD thyroid and GO orbital fat share high oxidative stress (OS) and hypervascularization. We investigated the metabolic pathways leading to OS and angiogenesis, aiming to further decipher the link between local and systemic GD manifestations. Plasma and thyroid samples were obtained from patients operated on for multinodular goiters (controls) or GD. Orbital fats were from GO or control patients. The NADPH-oxidase-4 (NOX4)/HIF-1α/VEGF-A signaling pathway was investigated by Western blotting and immunostaining. miR-199a family expression was evaluated following quantitative real-time PCR and/or in situ hybridization. In GD thyroids and GO orbital fats, NOX4 was upregulated and correlated with HIF-1α stabilization and VEGF-A overexpression. The biotin assay identified NOX4, HIF-1α and VEGF-A as direct targets of miR-199a-5p in cultured thyrocytes. Interestingly, GD thyroids, GD plasmas and GO orbital fats showed a downregulation of miR-199a-3p/-5p. Our results also highlighted an activation of STAT-3 signaling in GD thyroids and GO orbital fats, a transcription factor known to negatively regulate miR-199a expression. We identified NOX4/HIF-1α/VEGF-A as critical actors in GD and GO. STAT-3-dependent regulation of miR-199a is proposed as a common driver leading to these events in GD thyroids and GO orbital fats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。